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Synopsis 
Kinetic data can be determined from the relation of two kinetic equations in their 

integrated form. For the calculation of the exponent,ial integral, approximations are 
generally used, which allow a simple calculation of the activation energy. With respect. 
of the most frequently used approximations, an evaluation of error produced by their 
application has been calculated. The best results can be achieved by using the eqiiation 

which permit,s det,ermination of E to within 1% accuracy. 

Introduction 

In  the study of thermal decompositions we assume that their progress can 
be described by the equation 

where the fraction decomposed a is the ratio of weight, volume, or number 
of moles of the initial mass decomposed to the original quantity, Z is a con- 
stant involving frequency factor, and f ( a )  is only the function a. For poly- 
mer pyrolyses the function of j(u) usually has the form (1 - a)", where ?z 

is reaction order. If the heating rate 4 is constant, eq. (1) rearranged in 
integral form can be written 

The activation energy can be determined from the relationship of two sets 
of eq. (2), where the upper limits of integration on the right-hand side are 
T I  and T2. On the left-hand side of both equations there are different lim- 
its of integrat i~n, ' -~ a1 and a2 or temperature in~re rnen t s~ .~  and &. If 
the reaction is not of the first order, the left-hand sides can differ by a dif- 
ferent Z.6 If we designate this quantity, which is different in both equa- 
tions as {, we get (see following page) 
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1 " exp( - E / R T )  d T 

l2 l T * e x p (  -E/RT)dT 
Q - - (3) 

The integral of'  the exponential function has been calculated by using 
various methods. 

(1) By substitution, integration by parts, and neglecting the third and 
higher terms of the semidivergent series6,' we get 

JTexpi - - E / R T J ~ T  = (RT2/E) expl -E/RTl  (4) 

(2)  By neglecting the changes of t,he quadratic term against the ex- 
ponential, eq. (4) will be further simplified,**g yielding 

where T ,  is the mean value of the temperature interval within which the 
reaction takes place. This approximation has been used by other 
a u t h ~ r s . ~ . ' ~  

(3) Horowitz and Metzger2~" suggested another relationship : 

exp( --E/RT) = expl - (-E/RTs) [1 - @/TS)l) 

where 
6 = Ti - Ts  

(4) For this calculation, Reich12 has used the equation 

- I' 
T1' = T1 = Tz' - Tz = AT is so narrow a temperature interval that the 
integral can be replaced with a sufficient degree of accuracy by the first 
term of Taylor's expansion. The application of the above approximations 
is evident. By substituting, e.g., eq. (4) into eq. (3) we get's4 

where { is either the integral' da/ f (a)  or the heating rate4 4, or, in a 

favorable case, Z. The more often used graphical method consists in 
plotting In ( - 2 In T against 1/T and determining the slope of the plotted 
straight line. 
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Calculation of Errors 

We express the activation energy as a function of {1/{2 = { 1 z P :  

E = cp(t12P) 

C 1 2 p  = f ( E )  

where f is a inverse function to cp. In  this case f is a transcendental func- 
tion and in the interval at hand can be replaced by a simpler function of 
f lap  

We define E,, as a function of { l Z p :  

If the difference between true and approximate value of activation energy 
AE is small we can write 

E - E,, = AE 
- - c P a p ( t n a p )  - ' P a p ( t i z p )  

= cp ' laP( t l2 ) (SI2UP - t 1 2 P )  (13) 

{I2 E (C12UP, T 1 2 P )  (14) 

(15) 

(16) 

where 

For the first approximation the following expressions may be obtained 

f a p ( E )  = ( T 1 2 / T 2 2 )  exp { -E(Tz  - T I ) / R T I T ~ ]  

v a p ( < n )  = - [RTiTz/(Tz - T i ) ]  In ( T z 2 / T i 2 ) { 1 2  

2! 3! 4! (-l)"(n - I ) !  1 -  - + - -  - .  . . 
x 1  x12 xl3 x1"--2 

1 - - + - - - .  . . _____--- 
2 2  2 2 2  2 2 3  x2"--2 

f ( E )  = f a p ( E )  2! 3! 4! (-l)"(n - l)! 

where 
(-l)"-'(n - l)! 

.~ 
3! 4 !  
+7-... 2x1"--3 2 x 1  2 x 1 2  

& = l - -  

(- l)"-'(n - I)! 
- .. 

3! 4! 
f i 2  = 1 - - + - 

2 x 2  2 x 2 2  2x2"-3 
. . . -- 
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c b a p / 4 - i z  = - [RTiTz/(Tz - T I )  1(1/(12) 

If Ti  > T z  it, follows that 

RTITz  2R(&Ti - &Tz) 
(22) ' T I  - T z  E [ l  - (2RTl/E)&] 

I3y using the second approximation it follows in the same way that 

I (23) 
RTiTz 

Tz - Ti 
Tz2 - Ti2 - (2RTz3/E)9z + (2RTi3/E)6i 

Tzz[l - (2RTz/E)&] 
E <  

The third approximation leads to a rather cumbersome expression. 
illustration, if only the first five terms are considered, we get 

AE 1 
E 
- 

In  

I - x(hl - hz) 

v- a(hi - hz) + b(hI2 - h?) + c(h13 - hZ3) + d(h,4 - hz4) I 
2 6 24 120 720 
x 22 2 3  2 4  x b  

A 

I - - + -  - - + - - - . . .  + ah2 + bhz2 + ehz3 + dhz' 

where 

. . .  6 24 120 720 5040 40320 
a = 2 -  + - - - + + - - - -  +- 

2 2 2  x3 2 4  x5 X6 

12 60 760 2520 20160 
x 22 x3 x4 2 6  

20 120 840 6720 -x+4--+-- - ~ + -  
X 62 2 3  2 4  

30 210 1680 - + ~ - ~ - ,  . . X 2  d = - - x + S -  
2 X X2 2 3  

b =  - ~ + 3 - - + + - ' -  + - - - . .  . 

. . .  c = 

and 
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The error of the last method is given by 

AE 16 
E' 

wherc 

AT 
Ti 

81 = 1 + 1/3 -- (21 ' 

AT 
7'2 

= 1 + 1/3 ( X Z  

(25) 

Discussion 

The use of the first approximation leads to a lower E value; in view of 
the fact that x is generally greater than 20, the error varies within tenths 
of one per cent. This conclusion is in accordance with the tabulated ratios 
between true and approximate values of the exponential integral.I3 When 
applying the second method, the error is in the opposite sign and its value 
can exceed 10%. This is obviously the reason for the very high activation 
energy calculated by Ingraham and Marier." The third approximation 
with small h is approaching the second one, and roughly the same applies to 
its error. By a suitable choice of T,, however, a substantially greater ac- 
curacy can be achieved, becauee the first two terms of the numerator can 
mutually cancel. This happens, if we choose hz = 0 and hl = 0.10 for 
x = 20, hl = 0.067 for x = 30, hl = 0.05 for x = 40. The requirement that 
T, should be the temperature at  which the rate of reaction reaches it maxi- 
mum value cannot, therefore, in this case be justified. By using the last 
method we obtain a lower activation energy. By substituting T' for T 
in the exponential function, the error will have the opposite sign and will be 
somewhat greater. In both cases, its size will be directly proportional to 
AT and inversely proportional to the difference T2 - T1. 

van Krevelen et al.3 have suggested a more complex approximation, 
which has not been widely used 

lT exp{ -E/RT]dT = [RTS2e/(RT, + E)](T/eTs)(E'RTa)+l 

If the activation energy error is calculated in this manner, it leads to a com- 
plex formula, which does not allow a simple evaluation of its size. If we 
choose T, i n  the center of the temperature interval within which the reac- 
tion is being studied, E is greater than its actual value, the error being of 
the order of several per cent. 
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We can conclude that the first method gives excellent results, provided x 
is not too small. The same applies for the last approximation, provided 
T z  - TI against AT is sufficiently great. In both cases, the error lies far 
below the experimental error, which produces variations of activation 
energy in the range of 5-10%. 
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Des dorinkes cinbtiques peuvent 6tre determinkes au depart de la relation existant entre 
deux bquations cinktiques sous leurs formes intkgrbes. Pour le calcul de l’intkgrale 
exponentielle, des approximations sont gbnbralement utiliskes, qui permettent un calcul 
simple de l’bnergie d’activation. En regard des approximations les plus frbquemment 
utilisbes, une bvaluation des erreurs produites par leur application a 15th calculbe. Le 
meilleur rbsultat peut 6tre obtenu en utilisant la formule indiqube dans le rbsume anglais 
et permet de determiner E avec une precision 1% prks. 

Zusammenfassung 
Kirietische Iht,eii kiiiineii ails der Beziehung zwischen zwei kinetischen Gleichunyen 

in ihrer integrierten Form bestimmt werden. Zur Berechnung des exponent,iellen Iiiteg- 
rals werden im allgemeineri Naherungen verwendet, welche eine einfache Berechnung 
der Aktivierungsenergie erlauben. Fur die am haufigsteii verwendeten Naherungen wird 
der durch ihre Anwendung erzeugte Fehler ermittelt. Die besten Ergebnisse werden 
mit der in der englischen Zusammenfassung angegebenen Formel erhalten, nach welcher 
E mit einer Genauigkeit von 1% bestimmt wird. 
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